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Note on eigenvalue bounds for the 
Orr-Sommer feld equation 
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[Received 8 November 1968 and in revised form 27 March 1969) 

Bounds for the complex wave velocity c ,  determined by the Orr-Sommerfeld 
equation and the boundary conditions for channel flow, have been given by 
Joseph (1968a,b). In these notes it is shown how two of Joseph’s theorems can 
be uniformly improved. 

1. Preliminary 
The differential system considered consists of the Orr-Sommerfeld equation 

(1) 

(2) 

for flow between parallel plates. In (1) a is the wave-number, U the dimensionless 
velocity of the primary flow, R the Reynolds number based on the spacing d of 
the plates, c = C, + ici is the complex wave velocity, and accents indicate differ- 
entiation with respect to the dimensionless ordinate y measured in the direction 
normal to the plates. For convenience, the space occupied by the fluid is specified 
by the interval 

instead of 0 < y 6 1, as in the paper of Joseph (1968). The length scale remains 
the same. The parameters R and a are non-negative. 

By multiplying (1) by #*, the complex conjugate of 4, and integrating through- 
out the interval specified by (3), using (2) whenever necessary, Synge (1938) 

(4) 
obtained 

and ( 5 )  

iaR[( U - c )  (qY - a”) - U”4] = $Iv - 2a24“ + a44 

4(kB) = 0 = $’(*+I> 
and the boundary conditions 

(3) -1 < Z \ Y 6 < 9 ,  

CS = {Q - Q” - (aR)-l(I; + 201~12, + a41:)}/(1; + a21;), 

c, = {S[ UI 4’1 2 + (a2U + < U’!) I 4 I 21 dy}/(12, + a21i), 

in which 1; = Jl4”l”Y, 12, = /14‘I”Y7 
I: = /l~lzdy, Q = &JU’&5‘”dy. 

The upper limit in all the integrals is < and the lower limit - Q. 
Using (4) and Schwarz’s inequality, Synge (1938) obtained the estimate 

where 
in the interval (3). 
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2. An upper bound for ci 
Using (6), Joseph (1969) concluded that 

and that, if aRq < f(a) = max [M,, M2], 
M, = (4-73)22n+2*a3,  

M2 = ( 4 * 7 3 ) 2 2 ~ + 2 a % ,  

then ci cannot be positive. Result (8) greatly improves the result of Synge (1938). 
We shall show that ( 7 )  to (9) can be uniformly sharpened. Starting from (6), 

we immediately obtain 

THEOREM 1. 

in which 

Of course h2 must be given explicitly in terms of a. To evaluate A2, we shall use 
the variational method. That is, we shall give $ a variation S$ satisfying 

S$( f 4) = S$’( & 4) = 0, (12) 

and require the ratio in (11) to be a minimum, thereby finding a differential 
equation to be satisfied by q5 and containing A2 as a parameter. This equation is 
no longer (1). I t ,  with (2), will determine h2. Since the # in (1) is four-times differ- 
entiable, we shall assume 8$ to be four times differentiable also. Remembering 
the definitions of I,, I; and I,, allowing q5 to have the variation S$ satisfying (12) 
and four times differentiable but otherwise arbitrary, and requiring the ratio 
in (1  1 )  to be an extremum, we obtain, upon neglect of quadratic terms in Sq5 and 
its derivatives and after integrations by parts whenever necessary, 

n 
i5 

12, + a21i J(D2 - a2 + A 2 )  ( 0 2 -  a2) q5 Sq5 dy = 0, 

the limits of integration being understood, and D denoting dldy. Since Sq5 is 
arbitrary, q5 must satisfy 

( 0 2 -  a2 + A 2 )  (D2 - a2 ) q 5  = 0. (13) 

This and ( 2 )  constitute a differential system which defines an eigenvalue problem, 
with h2 as the eigenvalue for any given a2. The differential system admits even 
or odd solutions for $. For even $, it gives the secular equation 

(14 )  d(h2 - a2) tan &,/(A2 - a2) = - a tanh &a. 

The solution of (14) will be denoted by A,, the subscript meaning ‘even’. The 
lowest A: is plotted in figure 1 for comparison with the corresponding values 

m2 + a2 and n2(4m2 + a2)/(m2 + a2) + a2, 
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given by Joseph in (1968) and in equation (7), respectively. That h2, is uniformly 
an improvement of (7) is evident. 

For odd 4 the secular equation is 

d(h2 - a2) tanh &a = a tan Bd(h2 - a2). (15) 

The solution of this equation will be denoted by A:, the subscript meaning ‘odd’. 
The values of the lowest A: for various values of a2 are also plotted in figure 1. 
It can be seen from figure 1 that the lowest A: is greater than the lowest A: for 
all values of a2. It is also clear that the h2 in (1  3) is an extremum only if q5 is even 

100 

90 

80 

70 

60 

50 

I I 1 I I 1 I 

- - 
aa - - 

- - 
- - 
- - 

0 1  I I I I I I I I 
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4-0 

U 

FIGURE 1. The V ~ I U ~ S  of Joseph’s bound + n2( 4na + a2)/(na + U S )  : - - -. Joseph 
previously gave the less sharp bound na + ua. The improved bound is A:. 

or odd, since, as can be shown, the general secular equation in the form of a four- 
by-four determinant can be factorized into two equations which are precisely 
(14) and (15). Near any solution of (14) h2 cannot be an extremum unless 4 is 
even, and near any solution of (15) ha cannot be an extremum unless q$ is 
odd. In  fact, the spectrum of A: and the spectrum of A: separate each other. Hence 
the lowest A2, is the value we want. 

Note that from (13) and its boundary conditions we can easily obtain (with 
limits and dy omitted) 

J 1 2  + (209 - ~ 2 )  104 1 2  + aya2 - a2) J I 4 1 2  = 0, 

from which it is obvious that A2 is real. Thus it is quite unnecessary to consider 
complex forms of the function 4, for its real and imaginary parts would separately 
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satisfy (13) and its boundary conditions, and the function that gives the lowest h2 
is proportional to the real eigenfunction q5 corresponding to the lowest eigenvalue 
A:. The constant of proportionality may be complex, but the lowest h2 is just the 
A: we have obtained. 

3. A sufficient condition for stability 

cannot be positive if 
We shall now give the improvement of (8) and (9). From (6), we see that ci 

(16) 
I ;  + 2a21; + 01"; 

I0 I1 
olRq < 

We shall try to minimize the right-hand side of (16), the minimum value of which 
will be denoted bv K ~ .  If 

and 

I; + 2212, + a 4 ~ ;  

I ;  
K; = min 

I ;  + 2 ~ 1 2 ,  + a4~;  

1; 
K; = min , 

(17) 

then obviously K l K 2  6 K2. (19) 

The obviously correct statement, that ci cannot be positive if 

aRq < K ~ ,  

can be replaced by the less sharp 

THEOREM 2a. c1 cannot be positive if 

6 ~ 1 ~ 2  (21) 
(less sharp, because of (19)). 

The estimate (21), however, has the advantage that K~ and K~ can be simply 
evaluated. The method of determining K; and K$ is the same as that used t o  
determine h2 in the preceding section. Again only even functions q5 need be 
considered. The differential system determining K; is 

(D2-a2)2#-K2$ 1 = 0, (22) 

(D2-CX2)2$bfK;D2$b  = 0, (23) 

in conjunction with (2)) and the differential system determining K~ is 

in conjunction with (2). The product K ~ K ~  is plotted against a in figure 2, which 
also shows Ml and M2 given by (9).  That the present estimate is an improvement 
over Joseph's (1969) is evident for 01 6 2.4; but for 01 > 2.4 Joseph's Ml is a 
better bound. We shall now proceed to find a bound for ctRq for stability which 
is uniformly better than Joseph's. 

Since for any real b 
1 

1011 6 S(I;+bal;) ,  

if we define K(a,  b )  by 
I "  

2b(1; + 2 q  + 014~;) 
K(01,b) = min I; + b21; 5 
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for any real a and b, it  is evident that 2 K(a,  b )  €or all values of b. Hence 

K~ 2 Kmax, 

where Kmax is the maximum of K with respect to b, for any a2, and we can use 
Kma, as a safe and at  the same time good substitute for K ~ .  Using the variational 
method, we obtain, for the determination of K(a,  b ) ,  the differential system 

K 
2b 

$'V - 2a2$/' + a 4 $  + - ($" - b2$) = 0, 

$( * 4) = 0 = $'( * 4,. 
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FIGURE 2. The greater of M I  and M ,  is Joseph's bound. 
The improved bound is Kmx. 

We shall again consider $ to be even, for an odd $ will give higher eigenvalues 
for K ,  In this way we can find K(a,  b )  for given a and various values of b. Thus 
KmaX is obtained, which is a function o f a  only. Its values are plotted in figure 2. 
All of these values correspond to the value of 3.55 for b, which does not seem to 
vary with a in the range of calculation. It is evident that Kmax improves Joseph's 
estimate (9) uniformly. We have now the sharper 

THEOREM 2. ci cannot be positive i f  

6 Kmax. (24) 

This work has been jointly sponsored by the National Science Foundation and 
the Army Research Office (Durham). The author is indebted to Mr C. H. Li for 
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computational assistance. To avoid duplicating the graphs, the numerical values 
of A:, A:, K ~ ,  K ~ ,  K ~ K ~  and K,,, have not been reproduced here in tabular form. 
Readers interested in these values are invited to write to  the author. 
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